Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334630

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown origin, with a median patient survival time of ~3 years after diagnosis without anti-fibrotic therapy. It is characterized by progressive fibrosis indicated by increased collagen deposition and high numbers of fibroblasts in the lung. It has been demonstrated that CCL18 induces collagen and αSMA synthesis in fibroblasts. We aimed to identify the CCL18 receptor responsible for its pro-fibrotic activities. METHODS: We used a random phage display library to screen for potential CCL18-binding peptides, demonstrated its expression in human lungs and fibroblast lines by PCR and immunostaining and verified its function in cell lines. RESULTS: We identified CCR6 (CD196) as a CCL18 receptor and found its expression in fibrotic lung tissue and lung fibroblast lines derived from fibrotic lungs, but it was almost absent in control lines and tissue. CCL18 induced receptor internalization in a CCR6-overexpressing cell line. CCR6 blockade in primary human lung fibroblasts reduced CCL18-induced FGF2 release as well as collagen-1 and αSMA expression. Knockdown of CCR6 in a mouse fibroblast cell line abolished the induction of collagen and α-smooth muscle actin expression. CONCLUSION: Our data indicate that CCL18 triggers pro-fibrotic processes via CCR6, highlighting its role in fibrogenesis.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Humanos , Camundongos , Animais , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Linhagem Celular , Colágeno/metabolismo , Quimiocinas CC/metabolismo , Receptores CCR6/metabolismo
2.
PLoS One ; 7(7): e38369, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815690

RESUMO

Surfactant proteins (SPs) are important lipoprotein complex components, expressed in alveolar epithelial cells type II (AEC-II), and playing an essential role in maintenance of alveolar integrity and host defence. Because expressions of SPs are regulated by cyclic adenosine monophosphate (cAMP), we hypothesized that phosphodiesterase (PDE) inhibitors, influence SP expression and release. Analysis of PDE activity of our AEC-II preparations revealed that PDE4 is the major cAMP hydrolysing PDE in human adult AEC-II. Thus, freshly isolated human AEC-II were stimulated with two different concentrations of the PDE4 inhibitor roflumilast-N-oxide (3 nM and 1 µM) to investigate the effect on SP expression. SP mRNA levels disclosed a large inter-individual variation. Therefore, the experiments were grouped by the basal SP expression in low and high expressing donors. AEC-II stimulated with Roflumilast-N-oxide showed a minor increase in SP-A1, SP-C and SP-D mRNA mainly in low expressing preparations. To overcome the effects of different basal levels of intracellular cAMP, cyclooxygenase was blocked by indomethacin and cAMP production was reconstituted by prostaglandin E2 (PGE2). Under these conditions SP-A1, SP-A2, SP-B and SP-D are increased by roflumilast-N-oxide in low expressing preparations. Roflumilast-N-oxide fosters the expression of SPs in human AEC-II via increase of intracellular cAMP levels potentially contributing to improved alveolar host defence and enhanced resolution of inflammation.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Alvéolos Pulmonares/citologia , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , AMP Cíclico/metabolismo , Ciclopropanos/farmacologia , Dinoprostona/metabolismo , Feminino , Humanos , Indometacina/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Isoenzimas/metabolismo , Masculino , Pessoa de Meia-Idade , Diester Fosfórico Hidrolases/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Physiol Meas ; 31(2): 261-72, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20086272

RESUMO

Flush perfusion of the pulmonary artery with organ protection solution is a standard procedure before lung explantation. However, rapid flush perfusion may cause pulmonary oedema which is deleterious in the lung transplantation setting. In this study we tested the hypotheses that high pulmonary perfusion pressure contributes to the development of pulmonary oedema and positive end-expiratory pressure (PEEP) counteracts oedema formation. We expected oedema formation to increase weight and decrease compliance of the lungs on the basis of a decrease in alveolar volume as fluid replaces alveolar air spaces. The pulmonary artery of 28 isolated porcine lungs was perfused with a low-potassium dextrane solution at low (mean 27 mmHg) or high (mean 40 mmHg) pulmonary artery pressure (PAP) during mechanical ventilation at low (4 cmH(2)O) or high (8 cmH(2)O) PEEP, respectively. Following perfusion and storage, relative increases in lung weight were smaller (p < 0.05) during perfusion at low PAP (62 +/- 32% and 42 +/- 26%, respectively) compared to perfusion at high PAP (133 +/- 54% and 87 +/- 30%, respectively). Compared to all other PAP-PEEP combinations, increases in lung weight were smallest (44 +/- 9% and 27 +/- 12%, respectively), nonlinear intratidal lung compliance was largest (46% and 17% respectively, both p < 0.05) and lung histology showed least infiltration of mononuclear cells in the alveolar septa, and least alveolar destruction during the combination of low perfusion pressure and high PEEP. The findings suggest that oedema formation during pulmonary artery flush perfusion in isolated and ventilated lungs can be reduced by choosing low perfusion pressure and high PEEP. PAP-PEEP titration to minimize pulmonary oedema should be based on lung mechanics and PAP monitoring.


Assuntos
Transplante de Pulmão/métodos , Pulmão/fisiologia , Pulmão/fisiopatologia , Pressão , Artéria Pulmonar/fisiologia , Edema Pulmonar/fisiopatologia , Análise de Variância , Animais , Técnicas In Vitro , Leucócitos Mononucleares/patologia , Pulmão/patologia , Dinâmica não Linear , Tamanho do Órgão , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiologia , Alvéolos Pulmonares/fisiopatologia , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...